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Abstract. Detecting people in images is a key problem for video indexing,
browsing and retrieval. The main difficulties are the large appearance variations
caused by action, clothing, illumination, viewpoint and scale. Our goal is to find
people in static video frames using learned models of both the appearance of
body parts (head, limbs, hands), and of the geometry of their assemblies. We
build on Forsyth & Fleck’s general ‘body plan’ methodology and Felzenszwalb
& Huttenlocher’s dynamic programming approach for efficiently assembling
candidate parts into ‘pictorial structures’. However we replace the rather simple
part detectors used in these works with dedicated detectors learned for each
body part using Support Vector Machines (SVMs) or Relevance Vector Machines
(RVMs). We are not aware of any previous work using SVMs to learn articulated
body plans, however they have been used to detect both whole pedestrians and
combinations of rigidly positioned subimages (typically, upper body, arms, and
legs) in street scenes, under a wide range of illumination, pose and clothing
variations. RVMs are SVM-like classifiers that offer a well-founded probabilistic
interpretation and improved sparsity for reduced computation. We demonstrate
their benefits experimentally in a series of results showing great promise for
learning detectors in more general situations.

Keywords: Object recognition, image and video indexing, grouping and segmen-
tation, statistical pattern recognition, kernel methods.

1 Introduction

Detecting people in images is an important practical challenge for content-based image
and video processing. It is difficult owing to the wide range of appearances that peo-
ple can have. There is a need for methods that can detect people in general everyday
situations. For instance, actors in typical feature films are shown in a great variety of ac-
tivities, scales, viewpoints and lightings.We can not rely on frequently-made simplifying
assumptions such as non-occlusion, perfect background subtraction,etc.

To address this issue, Forsyth & Fleck introduced the general methodology ofbody
plans [8] for finding people in images. However, they relied on simplistic body part
detectors based on generalized cylinders. This is problematic, especially in the case
of loose clothing. Similarly, Felzenszwalb & Huttenlocher [6] showed how dynamic
programming could be used to efficiently group body plans cast as ‘pictorial structures’
[7], but they relied on simplistic colour-based part detectors. Both of these works make
strong photometric assumptions about the body parts.We retain their ideas for composing
� This work was supported by the European Union FET-Open research project VIBES

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2353, pp. 700–714, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



www.manaraa.com

Learning to Parse Pictures of People 701

parts into assemblies by building tree-structured models of people, but propose a more
general approach to learning the body part detectors and the underlying geometric model,
based on Support Vector Machines (SVM) [24,4] or Relevance Vector Machines (RVM)
[22,23]. In the past, SVM classifiers have been learned for entire humans [18] and also
for rigidly connected assemblies of subimages (typically, upper body, arms, and legs)
[16], but not for flexibly articulated body models.

We present a series of experiments showing the promise of learning the articulated
structure of people from training examples with hand-labelled body parts, using SVMs or
RVMs. Our contribution is three-fold. Firstly, our feature set and training method builds
reasonably reliable part detectors from as few as 100 hand-labelled training images, and
the final RVM detectors are very efficient, often involving comparison with only 2–3
positive and 2–3 negative exemplars. Secondly, we sketch a method for learning a body
joint model using the recently proposed Adaptive Combination of Classifiers (ACC)
framework [16]. Thirdly, we describe an efficient decoder for the learned models, that
combines kernel based detection with dynamic programming. Our initial experiments
demonstrate that body part detectors learned with only 100 images from the MIT pedes-
trian database can give reliable detection with as few as 4 false alarms per image on this
data set. This is remarkable as even humans often find it difficult to classify the isolated
part subimages correctly. The detected parts can be efficiently assembled into correct
body plans in 70% of cases.

The paper is structured as follows. We introduce our body plan model in§2, then
discuss body part detectors learned by two competing algorithms, SVM and RVM, in
§3. §4 presents our approach for learning and decoding body plans. Finally,§5 presents
some results and discusses future work.

2 The Pictorial Structure of People

In the work of Marr & Nishihara [15] and others [10,19], people are described as hier-
archical 3D assemblies of generalized cylinders and components. The position of a part
C relative to its parent P is parametrized by C’s position(p, r, θ) and angular orienta-
tion (ψ, φ, χ) in P’s cylindrical coordinate system. Each joint is thus represented as a
6-vector, with discrete toleranced values for each parameter. They note that perspective
projection makes many parameters unobservable and that the image signature of a joint
is a pair of axes, but still emphasize, and attempt to recover, 3D structure.

Recovering articulated 3D models from single images is difficult. Felzenszwalb &
Huttenlocher recently reconsidered Fischler & Elschlager’s notion ofpictorial structure
[7] and demonstrated its usefulness for detecting people in indoor scenes [6]. Pictorial
structures are collections of image parts arranged in deformable configurations. They are
directly adapted to monocular observations. Similarly, Morris & Rehg argued that 3D
tracking singularities can be removed using image based ‘scaled prismatic models’ [17]
— essentially, pictorial structure models. Other 2D part-based models use image edges
[25] or motion models derived from dense optical flow [14] as features for detection
and/or tracking.

Following this line of research, we represent people using a 2D articulated appearance
model composed of 15 part-aligned image rectangles surrounding the projections of body
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parts: the complete body, the head, the torso, and the left and right upper arms, forearms,
hands, thighs, calves and feet, numbered from 1 to 15 as in Figure 1. Each body partPi

is a rectangle parametrized in image coordinates by its centre[xi, yi], its length or sizesi

and its orientationθi. A coarse resolution whole-body image is also included in case ‘the
whole is greater than the sum of the parts’. During training and detection, we discretize
the admissible range of sizes and orientations. As discussed later, we use a range of
8 scales, and 36 orientations equally spaced every 10 degrees. 14 body joints connect
the parts: the plexus between body and torso, the neck between head and torso, the
hips between torso and thighs, the knees between thighs and calves, the ankles between
calves and feet, the shoulders between torso and upper arms, the elbows between upper
arms and forearms and the wrists between forearms and hands. Figure 1 shows the body
model in average position, using a single aspect ratio of 16:9 for all body parts.
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Fig. 1. Our articulated body model with its 14 joints and 15 body parts.

Expressed in terms of the probabilistic formulation of pictorial structure, the posterior
likelihood of there being a body with partsPi at image locationsli (i ∈ {1...15}) is the
product of thedata likelihoods for the 15 parts (i.e. the classification probabilities for
the observed subimages at the given part locations to be images of the required parts)
and theprior likelihoods for the 14 joints (i.e. the probabilities for a coherent body to
generate an image with the given relative geometric positionings between each part and
its parent in the body tree). The negative log likelihood for the whole body assembly
A = {l1, . . . , l15} can thus be written as follows, whereE is the list of body joints
(‘edges’ of the body tree):
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L(A) = −
∑

i

log pi(li) −
∑

(ij)∈E

dij(li, lj)

Felzenszwalb & Huttenlocher model body parts as constant color regions of known
shapes and body joints as rotational joints. In this paper, we machine-learn the 29 dis-
tributionspi(li) anddij(li, lj) from sets of positive and negative examples. We model
the part and articulation likelihoods using linear Support Vector or Relevance Vector
Machines. Our work can be viewed as an extension of Mohan’s recent work oncom-
bined classifiers [16], where ‘component’ classifiers are trained separately for the limbs,
torso and head based on image pixel values, and ‘combination’ classifiers are trained for
the assemblies based on the scores of the component classifiers in fixed image regions.
However, we learn part-aligned, rather than image-aligned, classifiers for each body part,
and we extend the ‘combination’ classifier to include deformable, articulated structures
rather than rigid assemblies.

3 Detecting Body Parts

In our model, learning each body part amounts to estimating its probability given the
observed image distribution at its location. Detecting and labelling body parts is a central
problem in all component-based approaches. Clearly the image must be scanned at all
relevant locations and scales, but there is also a question of how to handle different
part orientations, especially for small, mobile, highly articulated parts such as arms and
hands. One can work either in the image frame, trying to build a general detector that is
capable of finding the part whatever its orientation, or in a part-aligned frame, building a
detector that works for just one orientation and scanning this over all relevant orientations.
The part-aligned approach has the potential to produce simpler detectors from less (but
better labelled) training data, and the advantage that it also recovers the part orientation.
Which approach is faster or better must depend on the relative complexity and reliability
of all-orientation and one-orientation detectors, but in general it is difficult to build good
transformation invariance into general-purpose detectors. The image-frame approach
is well adapted to pedestrian detection applications such as Mohan’s [16], where one
wants a relatively coarse whole person detector for distant people with similar poses
(mainly standing or walking). But our ultimate goal is to detect people and label them
with detailed part locations, in applications where the person may be in any pose and
partly occluded. For this we believe that the part-based body plan approach is preferable.

Our detector works with a generalized feature pyramid spanning 8 scales and 36
orientations0◦ . . . 350◦. During training, the articular structure of each training image is
clicked, and for each designated part a14×24 subimage aligned with its axes and scaled
to its size is extracted as shown in Figure 2. We learn 15 Support Vector or Relevance
Vector Machines for the individual parts and the whole body, and during detection run
each of them over the scale-orientation-position feature pyramid, then assemble the
results as discussed in the next section.

3.1 Feature Sets

The problem of choosing features for object recognition has received a lot of interest
in recent years and numerous feature sets have been suggested, including image pixel
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Fig. 2. A hand-labelled training image from the MIT database and its extracted body part subim-
ages. Reading vertically from left to right: left upper arm, forearm, hand; left thigh, calf and foot;
head, torso and whole body; right thigh, calf, foot; right upper arm, forearm and hand.

values, wavelet coefficients and Gaussian derivatives. Wavelets are currently popular,
but as a general representation for human body parts it is unclear whether standard
(rectangular) or non-standard (square) wavelet constructions are most suitable [9,16].
Heiseleet al obtained better results for their SVM face detector using gray levels rather
than Haar wavelets [9]. Some authors also feel that wavelets are unsuitable as a general
image representation because they represent point events rather than line or curve ones,
and instead propose ridgelets and curvelets [2,5]. These might prove useful for detecting
human limbs.

Here we leave such issues for future work and use a feature set consisting of the
Gaussian filtered image and its first and second derivatives. Although simple, these
features seem to represent the variations of body part detail effectively over a range
of scales and orientations. The feature vector for an image rectangle at location-scale-
orientation[xi, yi, si, θi] contains the absolute values of the responses of the six Gaussian
σ = 1 filters {G,∇xG,∇yG,∇xxG,∇xyG,∇yyG} in the rectangle’s (rescaled and
reoriented)14 × 24 window. There are thus14 × 24 × 6 = 2016 features per window.
For color images we use only the luminance values Y. The absolute values of the filter
responses are normalized across each image. The extracted features are not required to
be scale- or orientation-invariant. On the contrary, we seek features that are tuned to the
characteristic scales and orientations of the detail in the aligned body-part images. Some
examples of the feature vectors are shown in Figure 3.
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To implement this, the Gaussian filters are computed using 9 rotated images from
0 to 80 degrees and 8 scales. We resample according to scale in each window, so the
standard deviation of the filters in their resampled14 × 24 windows is always1. For
any given size and orientation, we select the feature vector that best approximates the
part-aligned region as an axis-aligned rectangle of height 24. This choice of primitives
makes reasonably few assumptions about the nature of the features to be learned, which
can be arbitrary combinations of shape, luminance and texture.

Fig. 3. The∇xG and∇yG feature images for the example in Figure 2.

3.2 Training

Using the 2016-dimensional feature vectors for all body parts in the training set, we
trained two linear classifiers for each part, one using a Support Vector Machine and the
other using a Relevance Vector Machine. SVMs and RVMs are grounded on statistical
learning results that suggest that they should give good classification performance even
when there are relatively few training examples. Here we decided to put this claim to a
severe test by training on the smallest sets of examples that give reasonable results —
in our case, about 100.

We trained the 15 part classifiers individually against a common ‘background’data set
consisting of random pieces of the training images that do not contain people. Note that
we are not attempting to learn isolated part detectors or multi-class part-type classifiers,
butreliable filters for rejecting non-parts within an articulated body plan framework. We
expect the overlap in appearance between different parts to be significant, but we do not
want this to cause missed detections in ambiguous cases.

Support Vector Machines: SVMs are discriminant classifiers that give a yes/no
decision, not a probability. However in our experiments we treat the SVM scores (scalar
products in feature space) as if they were log likelihoods for the body parts given the
image values1.

1 A more principled approach to converting the scores of a discriminant classifier to probabilities
is as follows: run the detector over a validation set and fit density models to its positive-example
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Relevance Vector Machines: RVMs [22,23] are Bayesian kernel methods that
choose sparse basis sets using an ‘Automatic Relevance Determination’ [1] style prior
that pushes non-essential weights to zero. They do not usually give significantly better
error rates than the corresponding SVMs, but they do often give similar results with many
fewer kernels. The functional form of the final classifier is the same as that of an SVM
— only the fitted weights are different. Here we use logistic linear discriminant RVMs,
whose output directly models the log-odds for a part versus a non-part at the given point.
In this paper, we use RVMs mainly to reduce the number of kernels (‘relevance vectors’)
and hence the computational complexity. The trained RVM classifiers typically use only
2–3 positive and 2–3 negative relevance vectors each, as compared to 100–200 support
vectors for a comparable SVM classifier.

Currently we train the linear RVMs to make sparse use ofexamples, but they could
also be trained to make sparse use offeatures. This would potentially mean that fewer
image features would have to be extracted, and hence that the method would run faster.
We plan to investigate this in future work.

3.3 Detection

We detect all of the body parts at once, in a single scan over the orientation-scale pyramid.
The detection score for each part reduces to a simple convolution product against a mask
containing the discriminant sum of weighted support or relevance vectors. Conceptu-
ally, this amounts to generalized template matching over images of local feature vectors,
with weighted sums of training examples as templates. The nonlinearity of the process
is hidden in the rectified, normalized local feature vectors. For efficiency in the assem-
bly stage, we currently retain only the 50 best candidates for each part. The observed
detection rates suggest that this strategy suffices for simple images, but it is not ideal
for robustness against occlusions and we ultimately plan to use a more sophisticated
strategy based on adaptive thresholds.

4 Parsing the Body Tree

In a non-articulated, image-aligned method such as that of Mohan [16], assembling
the part detections is relatively straightforward: decompose the search window into
subwindows, keep the highest score for the appropriate part in each subwindow, and
compose the scores into a single, low-dimensional feature vector. Given these second-
stage feature vectors, a single linear SVM can be learned for the overall body detection.

In our articulated, part-aligned method, the composition of part-models is only
slightly more difficult, and can be cast as a combinatorial search: from all detected
parts, search for the assemblies looking most like people. Since assemblies are naturally
described as trees, efficient dynamic programming algorithms can be used to build the
second-stage classifier, as we now describe.

and negative-example output scores.At any given score, the ratio of the positive-example density
to the negative-example one is an estimate of the positive-to-negative odds ratio for detections
at that score.
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4.1 Parsing/Decoding Algorithm

Given N candidate body part locationslkn detected by each body part classifierCk,
we are looking for a ‘parse’ of the scene into one or more ‘body trees’. One important
subproblem is to assign a ‘valid detection’or ’false alarm’ label to each candidate, based
not only on the candidate’s scores, but on the local configuration between the candidates
and its neighbours. Our approach relies on an extension of theViterbi decoding algorithm,
as described by Ioffe & Forsyth [13] and Felzenszwalb & Huttenlocher [6], which we
sketch only briefly here. Given the detection scoresDk(lkn) for all candidatesn = 1...N ,
we search for the best candidate as a function of their direct parentspa(n) in the body
tree. For the leaves (i.e. hands, feet and head), this is computed by algorithm 1:

Algorithm 1 leaf location
Bk(ljm) = min{n=1...N} −Dk(lkn) + dkj(lkn, ljm)
l∗k(ljm) = arg min{n=1...N} −Dk(lkn) + dkj(lkn, ljm)

Based on this computation, we can score candidates from the bottom up, using the
recursion algorithm 2:

Algorithm 2 bottom up
Bk(ljm) = min{n=1...N} −Dk(lkn) + dkj(lkn, ljm) + Σ{c|k=pa(c)}Bc(lkn)
l∗k(ljm) = arg min{n=1...N} −Dk(lkn) + dkj(lkn, ljm) + Σ{c|k=pa(c)}Bc(lkn)

At the root node we obtain the simple formula 3 for scoring the high level hypotheses.

Algorithm 3 root location
Br = min{n=1...N} −Dr(lrn) + Σ{c|r=pa(c)}Bc(lrn)
L∗

r = arg min{n=1...N} −Dr(lrn) + Σ{c|r=pa(c)}Bc(lrn)

Choosing the most probable root node, we can then assign the other nodes in a top
down fashion by choosingL∗

k = l∗k(Lpa(k)) for each node given its parent. Note that this
algorithm has a complexityO(MN2) withM the number body parts andN the number
of candidates per body part. As an example of the detection results obtained with this
method, Figure 6 shows the three most probable parses for four test images, ranked in
order of decreasing likelihood.

4.2 Learning the Body Tree

The cost functions used in our body tree model are based on geometric constraints on the
relative positions of parts at a body articulation, as in Felzenszwalb & Huttenlocher [6].
Essentially, the articulation model is a linear combination of the differences between two
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Algorithm 4 joint distance(li, lj)
Compute joint locationxij , yij given first body part locationli
Compute joint locationxji, yji given second body part locationlj
Returndij = wx

ij |xij − xji| + wy
ij |yij − yji| + wθ

ij |θi − θj − θij | + ws
ij | log si

sj
− log sij |

joint locations, as predicted separately by the two body parts meeting at the articulation.

Each body joint is parametrized by the relative sizessij and anglesθij between its
parts, and the four rigidity parameterswx

ij , w
y
ij , w

θ
ij , w

s
ij governing the admissible range

of apparent deformations of the articulation in position, size and orientation. We learned
the relative sizessij and anglesθij of each articulation by simply taking the average
relative positions of all pairs of body parts over the training set.

To learn the rigidity parameters, we again used a Support Vector Machine. For each
articulationAij between partsPi andPj , we learned a ‘combination classifier’ based
on a five-dimensional feature vectorF 0

i = Di +Dj , F
x
i = |xij − xji|, F y

i = |yij −
yji|, F θ

i = |θi − θj − θij |, F s
i = | log si

sj
− log sij | .

Using positive and negative examples from our training set, we used a linear SVM
classifier to learn a set of weightsw0

ij , w
x
ij , w

y
ij , w

θ
ij , w

s
ij such that the score is positive for

all positive example, and negative for all negative examples. We experimentally verified
that the learned weights have the expected signs,w0

ij > 0 andwx
ij < 0, wy

ij < 0, wθ
ij <

0, ws
ij < 0 , so that the learned model can indeed be related to the log-likelihood of the

articulation

L(Aij) = F 0
i − |wx

ij |
w0

ij

F x
i − |wy

ij
|

w0
ij

F y
i − |wθ

ij |
w0

ij

F θ
i − |ws

ij |
w0

ij

F s
i

In our experiments with the MIT pedestrian database, the learned models performed
slightly better than the naive approach of assigning equal weights to all parameters and
all articulations, and we expect the method to be of even greater benefit for dealing with
the more complicated cases of people in action such as running or jumping.

5 Implementation and Results

We implemented and tested our method in Matlab. The system consists of several com-
ponents. There is an interactive program for hand-labelling examples and storing the
locations of the body joints and parts. Another function computes image pyramids and
extracts image signatures at all locationsx,y, s, θ . These are used both to generate
feature vectors for SVM/RVM training, and to perform detection against the learned
models. Finally, a parser based on the above dynamic programming approach reads can-
didate locations from the 15 body part detectors and produces a ranked list of candidate
assemblies.

We used MIT’s public domain program SvmFu-3.0 to train the SVM classifiers. We
trained the RVM classifiers in Matlab using a new algorithm that will be described in
detail elsewhere.
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5.1 Experimental Setup

We selected 100 frontal images from the MIT pedestrian database and labelled their
15 parts, as shown in Figure 2. Each example is labelled by clicking 14 body joints.
Occluded parts are clicked at their most likely (hidden) location, but flagged as occluded.
Only visible parts are used to train the image part models, but the hidden parts can be
included when training the geometric models. We also picked 5 background regions
in each image, for use as negative examples. As a result, each body part classifier was
trained with slightly less than 100 positive examples, and 500 negative examples.

Separate examples are needed for training and testing, so we selected and labelled
another 100 images from the MIT pedestrian database to serve as a test set. This was
used to evaluate the body part and assembly detectors.

5.2 Detection of Body Parts

Detectors are traditionally compared by tracing ROC curves, i.e. true detection rates
(recall) as a function of false alarm rates (1−precision). In our case the detectors must
be tuned to function as filters, so most important parameter is the false alarm rate needed
to achieve ‘total recall’. Hence, we compared the two detectors by measuring the false
detection rates required to detect all visible body parts in our test set. The resulting true
positive rates for each part detector are shown in Figure 4.
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Fig. 4. True positive rates for SVM and RVM body part detectors.

As can be seen, individual part images are not very discriminative, so the absolute
false alarm rates remain quite high. In fact, they become still higher (up to 15:1) once
confusions between parts are included. Even so, the linking stage manages to resolve
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most of the ambiguity, and the number of candidates that have to be examined remains
quite tractable, at most about 75 candidates per part for these images. Ignoring spatial
contiguity, the worst-case number of body joint hypotheses is therefore14 × 752 =
78750. In practice, we observed an average number closer to14× 202 = 5600 and used
50 candidates as a safe bet in all of our experiments. The RVM classifiers perform only
slightly worse than their SVM counterparts, with mean false detection rates of 80.1%
and 78.5% respectively. This is remarkable given the very small number of relevance
vectors used by the RVM detectors. For the purpose of rapid filtering, the advantages of
the RVM clearly outweigh their inconvenience.

Also note that the worst results are obtained for the torso (3) and head (2) models.
The torso is probably the hardest body part to detect as it is almost entirely shapeless. It
is probably best detected indirectly from geometric clues. In contrast, the head is known
to contain highly discriminant features, but the training images contain a wide range
of poses and significantly more training data (and perhaps some bootstrapping on false
alarms) is probably needed to build a good detector.

5.3 Detection of Body Trees

We evaluated the final body detector by visually comparing the best (highest probability)
three configurations returned with the correct interpretation in each of the 100 test set
images. Thus, the task was purely that of detecting humans using the 50 best candidates
for each body part and the body tree model. Our first experiment used 100 training
exemples. We obtained correct detections rates of 72 % using RVM scores and 83 %
using SVM scores, while using a naive geometric model with uniform rigidity parameters
for all of the body joints. We then learned a geometric model using labelled body joints
from the 100 training images. We used the correct assemblies as positive examples, and
circular permutations of the body parts as negative ones. Using the learned model, the
correct detection rates improved to 74 % and 85 %. We should note that detection is
a relatively easy task with this data set, and our method should be evaluated also with
regards to the pose estimates. We plan to investigate this area quantitatively in later work.
Qualitatively, we noted that a majority of the body parts were correctly positioned in
only 36 % of the test images for RVM and 55 % for SVM.

In a second experiment, we increased the size of the training set to 200 examples.
This resulted in a slight increase of the detection rates, to 76 % for SVM and 88 % for
RVM, and a much vaster improvement of the pose estimates, resulting in qualitatively
correct poses in 54 % of the test examples for RVM and 75 % for SVM.

6 Discussion and Future Work

The good detection rates achieved by the method make a convincing case that the body-
plan strategy is applicable to real problems in image and video indexing. We plan to
extend this work to video, where we hope to improve the detection rates even further
by making use of temporal and kinematic constraints. But the construction of the image
pyramid is computationally expensive, and we plan to move to a more efficient imple-
mentation, which could rely on a more thorough selection of the feature vectors. One
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Fig. 5. Part detection results from test collection.

way to do this will be to use RVM classifiers that learn relevant features rather than rel-
evant examples. As a complement, Sidenbladh & Black’s [20,21] approach for learning
the image statistics of people vs. background could prove useful for learning better mod-
els by selecting better features. In the assembly phase, the complexity of the dynamic
programming algorithm is quadratic n the number of candidate parts which need to be
stored, which in turn depends on the precision of the individual body part detectors. By
fine-tuning the body part detectors, we expect to achieve significant improvements also
in the overall performance of the global detector.

Further work will be needed for assessing the correctness of the detection and pose
estimation results in a more systematic way and for ’bootstrapping’ the learned models
(adding examples on which our current model fails, and retraining). Even without boot-
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Fig. 6. Ranked detections and their energies, using the learned body model and SVM scores.

strapping, we have verified experimentally that the quality of the body part classifiers
is improved significantly by increasing the size of the training data. We will need to
quantify this observation in future work.
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We also plan to extend the method to handle multiple persons in a greater variety of
backgrounds and poses, by explicitly representing occlusions in the decoding process
as in the work of Coughlan et al. [3] or by introducing mixtures of partial body trees,
as in the recent proposal made by Ioffe and Forsyth [11,12]. The cost functions used
to evaluate the assembly of the body plans could also benefit from a richer geometric
model and additional photometric constraints (e.g. similarity of color and texture between
the body parts for the same person). There are cases where we would like to move even
further away from the human anatomic model, and replace it with a small set of ’clothing
models’, which could be learned in much the same way and provide additional flexibility.
Those are avenues for further experimental work.

7 Conclusion

Detecting humans is a challenging problem in computer vision, with considerable prac-
tical implications for content-based indexing. We believe we have reached three useful
concusions with the work reported in this paper. Firstly, it is possible to learn appear-
ance models for human body parts from examples and to use them as input to a body
plan parser, at least for a modest-size problem such as pedestrian detection. Secondly,
we have been able to learn geometric models for the combination of the detected parts,
allowing us to robustly estimate the likelihood of a body part assembly, without recourse
to sampling or HMM distributions, which require thousands of examples to be learned
efficiently. Thirdly, the learned models lead to an efficient decoding algorithm that com-
bines kernel based learning and dynamic programming techniques, and is simple enough
to be extended to video sequences.
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